BOTTLENECKS ADDRESSED AND CHANGES MADE

No.

TIMES

old time(s)

Compound Nucleus Decay

Decay
events.= 7.07
1000

No. Of
decay
events.=
3000

21.51

A=195,)=50,
Events= 23.63
3000

Location

Nucleus.cpp(CNucleus::get

SumTI())

Nucleus.cpp(CNucleus::get

SumTI())

Nucleus.cpp (decay-
product generation)

Nucleus.cpp (decay-
product generation)

Project-wide

Nucleus.cpp (constructors

& initialization)

Nucleus.cpp (decay-
product handling)

gm_mweExecFusion.cpp,gm

_mwExecCompound.cpp

new time(s)

12.61

15.43

Average speed increase: 38.41% faster, 1.6x faster

Fusion Reaction

Default 10.23
Events=
20.5
1000
A=27,100
7.46
MeV
A=27,200
11.28
MeV

5.67

11.38

3.94

7.06

Average speed increase: 43.91% faster, 1.8x faster

Bottleneck

storeSub.push_back() caused
heavy reallocations and copies

Repeated calls to getTI(L,
ek*scale, temp) for same inputs

Heavy new/delete churn for
CNucleus objects during decay

Deep recursive decay traversal
causing function call overhead

Extensive use of pow() in
performance-critical code paths

Duplicated constructor logic and
repeated setup code

Frequent temporary vector
allocations across events

Throttled progress + cancel

handling

Speed Incerase(%)

39.18%

41.37%

34.68%

44.57%

44.49%

47.18%

37.41%

Change Made

Reused a thread_local buffer, reserved
capacity using (IMax - IMin + 1), and
replaced push_back with emplace_back

Added a small local cache to store
computed getTl values and reused them

Introduced a recycle pool (acquire() /
release()) to reuse CNucleus objects
instead of allocating each time

Replaced recursive decay traversal with
an explicit stack-based loop

Replaced pow() with equivalent direct
arithmetic (e.g., x*x)

Centralized all setup logic into
initializeDefaults() and initialize(...)

Reused decay-product vectors across
events instead of recreating them

Updated progress bar only every 10
iterations to reduce Ul overhead



