
BOTTLENECKS ADDRESSED AND CHANGES MADE

No. Location Bottleneck Change Made

1
Nucleus.cpp(CNucleus::get

SumTl())
storeSub.push_back() caused

heavy reallocations and copies

Reused a thread_local buffer, reserved
capacity using (lMax - lMin + 1), and

replaced push_back with emplace_back

2
Nucleus.cpp(CNucleus::get

SumTl())
Repeated calls to getTl(L,

ek*scale, temp) for same inputs
Added a small local cache to store

computed getTl values and reused them

3
Nucleus.cpp (decay-
product generation)

Heavy new/delete churn for
CNucleus objects during decay

Introduced a recycle pool (acquire() /
release()) to reuse CNucleus objects

instead of allocating each time

4
Nucleus.cpp (decay-
product generation)

Deep recursive decay traversal
causing function call overhead

Replaced recursive decay traversal with
an explicit stack-based loop

5 Project-wide
Extensive use of pow() in

performance-critical code paths
Replaced pow() with equivalent direct

arithmetic (e.g., x*x)

6
Nucleus.cpp (constructors

& initialization)
Duplicated constructor logic and

repeated setup code
Centralized all setup logic into

initializeDefaults() and initialize(...)

7
Nucleus.cpp (decay-
product handling)

Frequent temporary vector
allocations across events

Reused decay-product vectors across
events instead of recreating them

8
gm_mwExecFusion.cpp,gm

_mwExecCompound.cpp
Throttled progress + cancel

handling
Updated progress bar only every 10

iterations to reduce UI overhead

TIMES

old time(s) new time(s) Speed Incerase(%)

Compound Nucleus Decay

 Decay
events.=

1000
7.07 4..30 39.18%

No. Of
decay

events.=
3000

21.51 12.61 41.37%

A=195,J=50,
Events=

3000
23.63 15.43 34.68%

Average speed increase: 38.41% faster, 1.6× faster

Fusion Reaction

Default 10.23 5.67 44.57%

 Events=
1000

20.5 11.38 44.49%

A=27,100
MeV

7.46 3.94 47.18%

A=27,200
MeV

11.28 7.06 37.41%

Average speed increase: 43.91% faster, 1.8× faster

